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We numerically investigate the Fréedericksz transition for steady state plane shear flow of nematic liquid
crystals between two parallel plates in the presence of external magnetic fields. Three typical configurations
with the external field in the plane of the flow and perpendicular to it, in the plane and along the flow, and
where it is perpendicular to the plane of the flow are considered. In each case, the Fréedericksz transition is
studied as a bifurcation problem. Beginning with a steady state shear flow, solutions corresponding to slowly
increasing magnetic fields and those corresponding to fields which are suddenly turned on at a given intensity
are studied. For a typical idealized nematic, we show that the symmetric pitchfork bifurcation in the absence
of shear becomes a transcritical bifurcation from the trivial solution in one configuration while in another it
resembles a disconnected pitchfork where the turning point of the disconnected branch is a generic singularity
in the absence of symmetry or a trivial solution.
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I. INTRODUCTION

Nematic liquid crystals exhibit long-range ordering in the
sense that their rigid rodlike molecules arrange themselves
with their long axes parallel to each other. The direction of
alignment is usually described by a unit vectorn called the
director. Mathematical models for nematic liquid crystals are
derived generally from the work of Ericksenf1g and Leslie
f2g. A comprehensive discussion of the properties of nematic
and other liquid crystals can be found in Chandrasekharf3g,
deGennes and Prostf4g, and Collings and Patelf5g.

When an external magnetic field is applied to a nematic
liquid crystal trapped between two parallel plates, the base
configuration of the liquid crystal changes beyond a critical
field value. This effect is called the Fréedericksz transition
and is well known. For a thorough discussion see, for ex-
ample, Ref.f4g. The Fréedericksz transition can be used to
measure the elastic constants of a liquid crystalf4, pp. 123-
128g. The orienting effect of the applied external field and
the anchoring effect of the plates conflict with each other for
typical configurations used for the Fréedericksz transition.
Leslie f6,7g posed the problem in terms of the conservation
of linear and angular momentum and used the free energy of
the sample to determine the existence of a critical field
strength above which a nontrivial solution can exist. Derfel
f8g showed that the critical value above which the transition
occurs is at a pitchfork bifurcation point. Blake, Mullin, and
Tavenerf9g were able to compute the critical value numeri-
cally and demonstrate that the perfect pitchfork associated
with a magnetic field which is perpendicular to the plate
becomes a disconnected pitchfork when the field is slightly
perturbed from the perpendicular.

In this paper we investigate the effects described above
when a nematic is subject to a steady state shear flow. In
particular, we assume that the lower plate is held stationary
while the upper plate moves with a constant velocity. We
consider three different configurations where the external
field and anchoring conditions at the plates are in conflict. In
particular, we consider two external fields which are parallel
and perpendicular to the flow direction while remaining in
the plane of the liquid crystal, and an external field which is
perpendicular to the plane of the flow. Our simplifying as-
sumptions reduce the balance laws to a single ordinary dif-
ferential equation infszd for uszdg, the director angle. We
assume that the magnetic properties of the material are an-
isotropic and the difference of the susceptibilities parallel
and perpendicular to the direction of the flow is positive. The
material properties of the typical nematic used for numerical
investigations is based on Refs.f3,4g. We numerically show
that there is a Fréedericksz transition for small shear rates.
When the external field is perpendicular to the plane of the
liquid crystal, the applied shear plays no role and the ob-
served bifurcation is the perfect pitchfork of the static cases.
When the applied field is parallel to the flow direction, we
observe a change in the bifurcation picture but it still re-
sembles a pitchfork and the critical field strength changes
slightly. In this configuration we obtain a transcritical bifur-
cation from the trivial solution. However, when the external
field is perpendicular to the flow direction and in the plane of
the flow, we obtain a disconnected pitchfork at a higher value
of the critical field strength. The turning point of the discon-
nected branch represents a generic singularity in the absence
of symmetry.

The rest of the paper is organized as follows. In Sec. II,
we outline the continuum theory for nematic liquid crystal
flows. Section III describes the Fréedericksz transition and
its interpretation as a symmetry breaking bifurcation. Section
IV introduces the boundary value problem for the director
for steady state shear flows under the influence of a constant
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external magnetic field. In Sec. V, we outline the numerical
scheme used to solve the boundary value problem. We also
demonstrate the effectiveness of our scheme by computing
the critical field strength at which nematics undergo Fréed-
ericksz transition and present the symmetry breaking pitch-
fork bifurcation for this phenomenon. Finally, Sec. VI con-
tains the details of the Fréedericksz transition for nematics
under the influence of a shear.

II. DYNAMIC CONTINUUM THEORY FOR NEMATICS

The continuum theory of liquid crystals, established by
Ericksenf1,10,11g and Leslief2g, is based on the work of
Frank f12g and Oseenf13g. Nematic liquid crystals differ
from usual isotropic fluids since they exhibit a long range
orientational ordering. Following deGennes and Prostf4, pp.
98-105g, we assume the fundamental formula for the bulk
free energy of the continuum theory for nematics as

FOF = 1
2K1u = ·nu2 + 1

2K2un · s= 3 ndu2 + 1
2K3un 3 s= 3 ndu2,

s1d

where Ki .0, i =1,2,3 correspond to the splay, twist, and
bend elasticity constants. WhenK1=K2=K3=K the Oseen-
Frank energy reduces to the Dirichlet energyFDirichlet
=Ku¹nu2 subject to the constraintunu=1. The formulation
does not distinguish betweenn and −n. In cgs units, the free
energyFOF has units of energysper cm3d and the elastic
constantsKi are expressed in dynes. Different experimental
methods used to determine the elastic constants yield differ-
ent values but their order of magnitude is approximately
10−6 dyn.

The equations representing balance laws for mass, linear
momentum, and generalized momenta of the anisotropic
variables for an incompressible nematic are given below. In
addition ton, if we let v denote the velocity vector, andr the
density, the balance laws are

= ·v = 0, s2d

rv̇ = = · s, s3d

g1ṅ 3 n = = ·S ]FOF

] = n
D 3 n −

]FOF

]n
3 n + g1Vn 3 n

− g2An 3 n. s4d

In the above equations, the Cauchy stress tensors is given
by

s = pI − = nT
]FOF

] = n
+ sv, s5d

where the viscous stresssv is defined as

sv = sa1n ·Andn ^ n + a2N ^ n + a3n ^ N + a4A + a5An

^ n + a6n ^ An . s6d

The tensorsA and V represent the symmetric and skew-
symmetric parts of the velocity gradient,N= ṅ−Vn is an
invariant time derivative ofn, ṅ, andv̇ denote material time

derivatives, andpsx ,td is the pressure. The six Leslie coeffi-
cientsai determine the dynamics of the incompressible nem-
atic and the constantsg1 and g2 are linear combinations of
theai’s. For the few cases where experimental determination
is possible, these coefficients are of comparable magnitude
and in cgs units they range in value from 10−2 to 10−1 P.

A magnetic fieldH making an arbitrary angle with the
directorn induces the magnetizationM given by

M = x'H + sxi − x'dsH ·ndn = x'H + xasH ·ndn, s7d

wherexa measures the difference between the magnetic sus-
ceptibilities parallel and perpendicular to the director and is
positive for typical nematics. In cgs electromagnetic units,xa
is approximately equal to 10−7. The magnetic torqueGM act-
ing on the magnetizationM is GM =M 3H =xasn ·Hdn3H.
To include the effect of a magnetic fieldH, we modify the
free energyFOF of Eq. s1d to

F = FOF −E
0

H

M ·dH = FOF −
1

2
x'H2 −

1

2
xasn ·Hd2,

s8d

whereH=iHi. The term 1
2x'H2 is independent of the mo-

lecular orientationn and does not play a part in our discus-
sion, while the last term in the expression forF is minimized
whenn andH are collinear, sincexa.0. The balance laws
in the presence of an external magnetic field are given by the
Ericksen-Leslie equationss2d–s4d whereFOF is replaced by
F. We study the Fréedericksz transition for nematic liquid
crystals under the influence of a plane shear and an uniform
magnetic field. The boundary value problem for the director
orientation under these assumptions is derived in Sec. IV.

III. FRÉEDERICKSZ TRANSITION

The simplest method for determining the elastic constants
Ki is by studying the deformations of a thin layer of nematic
between two plates due to an external magnetic fieldf14,15g.
Three typical experimental configurations of a nematic be-
tween two plates, a distanced apart, are shown in Fig. 1. The
thin nematic slice is in thexz plane and the geometries are
chosen so that the orienting effect of the applied external
field competes with the restoring forces produced by the di-
rector alignment at the boundaries. As shown in the figure,
f=fszd andu=uszd are the angles that the directorn makes
with the x and z axis with f+u=p /2 andH represents the
constant external magnetic field. Specific details for the three
configurations including the boundary value problem for the
director angleu or f are given below.

Configuration (a). The undisturbed director orientation is
parallel to the plates and the applied magnetic field acts per-
pendicular to the plate in thexz plane. Using n
=scosf ,0 ,sinfd, H =s0,0,Hd, and v=s0,0,0d in Eqs.
s2d–s4d and s8d, we obtain

fasfd
d2f

dz2 +
1

2

dfa
df

Fdf

dz
G2

= −
xaH

2

2
sin 2f, s9d

with the strong anchoring boundary conditionsfs−d/2d
=fsd/2d=0, where fasfd=K1 cos2 f+K3 sin2 f. The mag-
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netizationM =fsxaH /2dsin 2f ,0 ,x'H+xaH sin2 fg, and the
magnetic torqueGM =(0,−sxaH

2/2dsin 2f ,0).
Configuration (b). The undisturbed director orientation is

parallel to the plates and the applied magnetic field acts per-
pendicular to thexz plane. Usingn=scosf ,sinf ,0d, H
=s0,H ,0d, andv=s0,0,0d in Eqs.s2d–s4d ands8d, we obtain

K2
d2f

dz2 = −
xaH

2

2
sin 2f s10d

with fs−d/2d=fsd/2d=0. The magnetization M
=(sxaH /2dsin 2f ,x'H+xaH sin2 f ,0), and the magnetic
torqueGM =(0,0,sxaH

2/2dsin 2f).
Configuration (c). The undisturbed director orientation is

perpendicular to the plates and the applied magnetic field
acts parallel to the platessor perpendicular to the undisturbed
director orientationd. Usingn=ssinu ,0 ,cosud, H =sH ,0 ,0d,
andv=s0,0,0d in Eqs.s2d–s4d and s8d, we obtain

fcsud
d2u

dz2 +
1

2

dfc
du

Fdu

dz
G2

= −
xaH

2

2
sin 2u, s11d

with the strong anchoring boundary conditionsus−d/2d
=usd/2d=0, wherefcsud=K1 sin2 u+K3 cos2 u. The magneti-
zation M =(x'H+xaH sin2 u ,0 ,sxaH /2dsin 2u) and the
magnetic torqueGM =(0,sxaH

2/2dsin 2u ,0).
Configurationsbd is the simplest since it involves only the

twist constantK2. If we assumeK1=K3=K, then the equa-
tions for configurationssad and scd simplify, since fasfd
= fcsud=K anddfa/df=dfc/du=0. Using these assumptions,
introducing a new scaled variablez̃=z/d and using primes to
denote derivatives with respect to the normalized variable,
we arrive at the generic boundary value problem

u9 = − l sin 2u, with us− 1/2d = us1/2d = 0, s12d

wherel=xaH
2d2/2K, andu is eitherf or u.

The competition between the effects of the field and the
restoring forces of the boundary alignment leads to transition
layers near the plates where the molecular effects have a

complicated coupling with the field. Following deGennes
and Prostf4, pp. 122-123g, the magnetic coherence length of
a nematic is defined asjsHd=s1/HdsK /xad1/2 where we have
assumedK1=K2=K3=K. It is well known that the thickness
of the transition layer is essentially equal to the magnetic
coherence length. In cgs units, takingK=10−6, xa=10−7, and
H=104 Oe, we notice thatjsHd has the order of 10−4 cm or
1 mm. If the sample thicknessd is much larger thanjsHd,
the bulk of the sample tends to align in the field direction.

The trivial solution always solves the boundary value
problemss9d–s11d and there is a critical field strengthHc
above which the magnetic torque overcomes the restoring
elastic forces and the director profile becomes distorted. The
critical field strength is

Hc =
p

d
S K

xa
D1/2

or lc =
p2

2
. s13d

Blake, Mullin, and Tavenerf9g study this problem as a sym-
metry breaking spitchforkd bifurcation. They assumeH
=sH sinc ,0 ,H coscd and discuss the two casesc=0 ftheir
computations correspond to configurationsad in this caseg
andcÞ0. The inherent reflectional symmetry of the problem
whenc=0 is broken whenc is nonzero. They show that for
H.Hc, two nontrivial solutions corresponding to clockwise
and anticlockwise distortions of the director appear. Typical
anticlockwise and clockwise distortions of the director with
respect tof=0 are shown in Fig. 2. The graph offszd ,
−d/2øzød/2 has the shape of a flattened parabola opening
downwards for anticlockwise distortions while it opens up-
wards for clockwise orientations. The parabola becomes flat-
ter and its vertex approaches the values ±p /2 asl increases.
If the graph ofuszd ,−d/2øzød/2 has a parabolic shape

FIG. 1. Model configurations for Fréedericksz transition. Con-
figurations sad, sbd, and scdrepresent different geometries and the
broken arrows orQ shows the direction of the external magnetic
field H.

FIG. 2. Typical anticlockwisestopd and clockwisesbottomd dis-
tortions of the director measured with respect tof=0. For u, the
orientations are reversed.
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opening upwardsrespectively downwardd, then this curve
corresponds to anticlockwisesrespectively clockwised distor-
tion with respect tou=0 or f=p /2. As the field strength is
increased steadily beyondHc, the trivial solution exchanges
stability with one or two possible nontrivial solutions which
are equally likely to occur leading to a pitchfork bifurcation.
Beyond the critical value, the trivial solution is unstable and
the distorted branches approach ±p /2 as H→`. When c
Þ0, the trivial solution no longer solves the boundary value
problem and there is a distortion in the director for any field
strength. Moreover, the bifurcation becomes a disconnected
pitchfork with a primary and a secondary branch.

IV. PLANE SHEAR FLOW FIELDS

We consider boundary value problems for a class of one
dimensional steady state shear flows between two parallel
plates. Figure 3 shows three typical configurations in the
case where the flow is along the positivex axis. Usingv
=(vszd ,0 ,0) in the balance laws, the boundary value prob-
lems for the three standard configurations are only slightly
modified from the static cases discussed in the previous sec-
tion. In particular, the differential equations9d for configura-
tion sad now has the additional term1

2sdv /dzdsg1

+g2 cos 2fd on the right, Eq.s10d is unchanged, and Eq.s11d
for configurationscd acquires the additional term12sdv /dzd
3sg2 cos 2u−g1d on the right. Notice that for configuration
sbd the addition of a shear does not change the boundary
value problem for determining the director. Thus the critical
field strength in this case will belc=p2/2<4.93.

Assuming that the upper plate moves at a constant rate of
V/d in the direction of increasingx, vszd=sV/ddsz+d/2d, or
dv /dz=V/d. Introducing a new scaled variablez̃=z/d, re-
placingg1 andg2 by some averageg, and assuming that the
elastic constantsK1 andK3 are equal toK, we arrive at the
normalized boundary value problems

f9 = − l sin 2f + ms1 + cos 2fd s14d

with fs−1/2d=fs1/2d=0 for configurationsad,

f9 = − l sin 2f with fs− 1/2d = fs1/2d = 0 s15d

for configurationsbd, and

u9 = − l sin 2u + mscos 2u − 1d s16d

with us−1/2d=us1/2d=0 for configuration scd, where m
=Vdg /2K. The trivial solution still solves Eqs.s15d ands16d,
but every solution for configurationsad with mÞ0 corre-
sponds to a distortion of the director.

V. NUMERICAL TECHNIQUES

In this section, we present the numerical techniques used
to solve boundary value problems of the forms14d–s16d for
the director orientationfszd or uszd on the domain −1/2
øzø1/2. Two point boundary value problems can be writ-
ten in standard form as a first order system,

y8szd = f„z,yszd… on a ø zø b, s17d

with g„ysad,ysbd… = 0, s18d

wherey, f, andg haven components and bothf andg may
be nonlinearssee, for example, Ascher and Rusself16gd. For
the single second order equation we consider here,n=2.
There is a comprehensive body of work on efficient numeri-
cal methods for boundary value problems of the forms17d
with boundary conditionss18d. For an overview on available
codes and their interrelations, consider Shampine, Gladwell,
and Thompsonff17g, pp. 156–167g. The book by Ascher,
Mattheij, and Russellf18g contains a more comprehensive
study and analysis of the numerical methods relevant to two-
point boundary value problems.

A robust approach for solving the boundary value prob-
lem s17d and s18d is to choose a form of the approximate
solution involving unknown parameters, require that this ap-
proximating function satisfies the boundary conditionss18d,
and then use collocation at a sufficient number of points so
that the parameters are determined uniquely. In particular, if
a=z0,z1,z2, ¯ ,zN=b is a mesh onfa,bg, the boundary
value problem can be solved by computing a cubic function
Sszd on each subintervalfzi ,zi+1g. The coefficients of the
function Sszd are determined by requiring thatSszd
PCfa,bg, g(Ssad ,Ssbd)=0, and that the piecewise cubic sat-
isfy Eq. s17d at both endpoints and the midpoint of each
subinterval. These conditions result in a system of nonlinear
algebraic equations in the coefficients of the piecewise cubic
function Sszd and it can be shown thatSszdPC1fa,bg. Once
a good guess of the solution is available on the initial mesh,
we use collocation to find an approximate solution on this
mesh, use an error estimator to estimate the error on each
subinterval, refine the mesh as indicated by the error estima-
tor, and then solve the problem on the resulting finer mesh.
This iterative process is repeated until the difference in the
computed solutions on two successive meshes or some simi-
lar stopping criterion meets a predetermined error tolerance.
The error estimator used for adaptive mesh refinement re-
quires specialized techniques. We use a Richardson extrapo-
lation based error estimator for our computations. The com-
puted solutionSszd satisfies the equation

FIG. 3. Model configurations for shear flow. The lower plate is
stationary and the upper plate has constant velocityV/d.
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S8szd = f„z,Sszd… + rszd, s19d

where rszd is the residual. For each subintervalfzi ,zi+1g of
any mesh, we associate a residual error estimatorrsid
=ezi

zi+1irszdi2dz, where the integral is evaluated using a five-
point Lobatto quadrature formula. We use a stopping crite-
rion where on each subinterval of the final mesh, the residual
satisfies

( rsid

maxSufsidu,
Asid
R

D ( ø R, s20d

where R is the relative tolerance andAsid is the absolute
tolerance onfzi ,zi+1g. For our computations, we chooseR
=10−2 and Asid=10−5. We have checked all the numerical
results we report in this work with lower values of the toler-
ances and with a finer final mesh than the one we use for our
results in the paper. The difference between the reported val-
ues and the more accurate ones are insignificant.

When the boundary value problems17d is difficult to
solve, the method of continuation is commonly used. The
technique exploits the fact that the solution of one boundary
value problem is a good guess for another whose parameters
differ only slightly. For example, we can solve any of the
boundary value problemss14d–s16d for given values ofl and
m by using a continuation onl as follows. Introduce a pa-
rameterd into the first term of the boundary value problem
and solve ford=0 scorrespondinglyl=0d. Using the solu-
tion of this problem, solve successive boundary value prob-
lems for 0,d1,d2, ¯ ,dM =1. The final solution solves
the problem for the given parametersl and m. We have
implemented these numerical methods using the available
tools and functionality ofMATLAB . A detailed discussion of
the numerical analysis and control of bifurcations in bound-
ary value problems can be found in Doedel, Keller, and
Kernévezf19,20g.

Given particular values of the parametersl and m, we
solve the boundary value problem using two different ap-
proaches. In the first approach the solution is obtained using
continuation on the magnetic field parameterl. This corre-
sponds to an experiment where we start with a given flow
rate and no magnetic field and slowly ramp up the magnetic
field to its desired value—we will refer to this as theramped
field. The process of starting at the initial valueli .0, of the
parameterl and reaching a final valuel f with l f ,li using
continuation will be called downward ramping. When con-
tinuation is not used, the solution scheme corresponds to a
sudden application of the magnetic field at the given inten-
sity. We will refer to this as animpulse field. Notice that the
equations we solve are pure boundary value problems and
our reference to impulse fields is just a way to distinguish
between the two methods of solving these boundary value
problems.

All computations in the next section correspond to three
different forms of the initial guess forfszd frespectively
uszdg which satisfy the boundary values. The three initial
guesses used for our computations are as follows:

Branch I. The undistorted orientation corresponding to
fszd;0 frespectivelyuszd;0g.

Branch II. The positive orientation corresponding to
fszd=f0 cosspzd frespectivelyuszd=u0 cosspzdg. This initial
guess assumes an initial anticlockwisesrespectively clock-
wised distortion.

Branch III. The negative orientation corresponding to
fszd=−f0 cosspzd frespectively uszd=−u0 cosspzdg. This
initial guess assumes an initial clockwisesrespectively anti-
clockwised distortion.

For most of our computations we assumef0=1. These
choices are motivated by approximations of the boundary
value problems as shown below.

A. Choice of initial configurations

A first order approximation for the differential equation
s14d yields

f9 = − l sin 2f + ms1 + cos 2fd < − 2lf + 2m s21d

with fs−1/2d=fs1/2d=0. Assuming fszd=C cosspzd for
the solution, we obtainC=f0=fs0d. Thus the solution to the
approximate boundary value problems21d yields anticlock-
wise srespectively clockwised distortions depending on the
sign of f0. Substituting this form of the solution in Eq.s21d
yields f0 cospz=2/s2l−p2d. This immediately leads to the
critical valueslc=p2/2 where the solution changes nature.
We have used this first order approximate solution to the
boundary value problems14d as the initial guess for our nu-
merical computations. The three solution branches in our bi-
furcation diagrams correspond tof0=0, f0.0, andf0,0.

B. Fréedericksz transition as a bifurcation

As a partial validity of our computational methods, Fig. 4
shows the computed bifurcation diagram for the boundary

FIG. 4. Computed bifurcation diagram for the Fréedericksz tran-
sition with shear in configurationsbd corresponding to the boundary
value problems12d. L, h, ands indicate impulse field computa-
tions with initial guesses corresponding to I, II, and III, respectively.
The line along the trivial branch indicates that ramped field compu-
tations corresponding to I, II, and III yield this solution branch.
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value problems12d when 0ølø20. This corresponds to any
of the three configurations in Sec. IV or to the shear flow
configurationsbd. The ramped field computations always cor-
responds to the trivial solution branch as indicated by the
line along this branch, even whenl.lc=p2/2. On the other
hand, the impulse field computations yield the trivial solution
when l,lc and the corresponding nontrivial solution
branch whenl.lc. Figure 4 shows all three solution
branches as plots off0=fs0d frespectivelyu0=us0dg against
the parameterl=xaH

2d2/2K. For the nontrivial solution
branches, the variablesf srespectivelyud always attain their
maximum value atz=0. These observations match the find-
ings of Blake, Mullin, and Tavenerf9g who use a finite ele-
ment approach based on the package Entwifef21g to solve
the boundary value problems and compute the critical value
lc. Derfel f8g first showed that the static Fréedericksz tran-
sition that occurs when a magnetic field is applied normal to
the nematicfstatic configurationsadg arises at a pitchfork
bifurcation point.

VI. DISCUSSION AND RESULTS

We consider an idealized nematic with the following ma-
terial characteristicssin cgs unitsd:

sid the difference between the magnetic susceptibilities is
approximately 10−7, or xa,10−7;

sii d the elastic constants are equal toK,10−6;
siii d the viscosity constantsg1 andg2 are assumed to be

replaced by some averageg,10−1.
Justifications for the orders of magnitude and underlying as-
sumptions for the material characteristics follow from our
discussions in Secs. II and III. Further, the plate separationd
is assumed large enough so that boundary effects may be
ignored. To this end, we taked to be of the order of
30–80mm or 10−3 cm. Following purely dimensional argu-
ments, if we assume a slow normalized shear rateV of ap-
proximately 10−2 for the upper plate and a large applied ex-
ternal magnetic fieldH,104, the assumptions underlying the
model of Sec. III are justified. With these choices the mag-
netic coherence length turns out to be smaller than the plate
separationd, or equivalently, 104,H@ s1/ddÎsK /xad,103.
The unperturbed alignment condition derived from a balance
of the magnetic and shear induced hydrodynamic torques,
10−2,V! sxaH

2d /g,102 is also satisfied. For these param-
eter choices the constantsm andl are approximately

m =
Vdg

2K
,

10−210−310−1

2 3 10−6 , 1 and s22d

l =
xaH

2d2

2K
=

10−710810−6

2 3 10−6 , 10. s23d

Notice that choosingg,10−2 andV,10−1 does not change
the estimated values ofl or m above. Shear configurationsbd
was discussed in the previous section and our observations
for the other configurations are presented below.

A. Bifurcation for shear configuration (c)

Figure 5 shows the bifurcation diagram for configuration
scd in the presence of a steady state shear where we have

assumedm=1. Although Figs. 5 and 4 look similar, there are
many differences. Equations16d does not have any symme-
try but admits a trivial solution and Fig. 5 is an example of a
transcritical bifurcation from the trivial solution. Moreover,
the value oflc is only approximatelyp2/2. Our numerical
experiments suggest that the upper branch II breaks off from
the trivial solution I at a slightly lower value ofl than the
lower branch III. A detailed study of the structure near these
critical values was not attempted in this work.

Computations for impulse fields with initial guessesuszd
=0, cosspzd, and −cosspzd, are shown usingL’s, h’s, and
s’s, respectively. The corresponding solution branches are
marked as I, II, and III. The continuous line along the trivial
branch indicates that all upward ramped field computations
lie along this branch. If we start on any solution branch at
some nonzero value ofli, and use downward ramping to
reach a value 0,l f ,li, the solution never leaves the
branch. Sinceuszd represents the angle the director makes
with the z axis as shown in Fig. 1, solutions along branch II
srespectively IIId represent clockwisesrespectively anticlock-
wised distortions of the director from the undistorted con-
figuration where the directors are perpendicular to the plates,
or u;0.

B. Bifurcation for configuration (a)

Figure 6 shows the bifurcation diagram for configuration
sad in the presence of a steady state shear withm=1. The
trivial solution no longer solves the boundary value problem
s14d, and every value of the magnetic field strength param-
eterl yields a distortion. Derfelf8g, investigating the effects
of imperfect alignment at the plates when a magnetic field is
applied normal to a static nematic, and the effects of the
magnetic field deviating slightly from normal, found similar
disconnected pitchforks. Blake, Mullin, and Tavenerf9g also
obtain a similar bifurcation picture by considering the nem-

FIG. 5. Computed bifurcation diagram for the Fréedericksz tran-
sition with shear in configurationscd corresponding to the boundary
value problems16d. L, h, ands indicate impulse field computa-
tions with initial guesses corresponding to I, II, and III, respectively.
The line along the trivial branch indicates that ramped field compu-
tations corresponding to I, II, and III all yield this solution branch.
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atic configurationsad without any flow, and assuming the
magnetic field to beH =sH sinc ,0 ,H coscd, wherec rep-
resents the deviation of the magnetic field from the normal to
the nematic. Their bifurcation diagram is a reflection in thel
axis of Fig. 6.

The lower branch of the bifurcation diagram represents
impulse field computations, indicated by thes’s, corre-
sponding to the negative initial distortions for branch III.
Moreover, the line in Fig. 6 represents ramped field compu-
tations beginning atli =0 and continuing upward tol f .0
for initial distortions corresponding to I, II, and III. This
suggests that the stability of the trivial solution in the sym-
metric pitchfork of configurationsbd is transferred to this
lower branch. Moreover,f0=fs0d=minf−1/2,1/2g fszd ap-
proaches −p /2 asl→`.

A nematic between two plates under a steady shear and
with no magnetic field has a clockwise distortion inf as
indicated by the value off0=fs0d<−0.25 corresponding to
l=0 in Fig. 6. Since all solutions for ramped fields lie on the
lower branch in Fig. 6, we infer that the applied external
ramped fields are unable to overcome the effects of the shear
and the anchoring at the plates. Our numerical experiments
demonstrate that this changes when a slightly different initial
condition which preserves the shape is chosen. In practice, a
Fréedericksz transition experiment including shear may in-
volve imposing the steady state shear on the sample before
the magnetic field is turned on. We have found that ramped
field computations corresponding to an initial clockwise con-
figuration fszd=−0.25 cosspzd always remain on the lower
branch, while the impulse field computations corresponding
to the same initial guess switch from branch III to branch I
beyondl=lc.

The upper portion of the bifurcation picture in Fig. 6 con-
sists of the two branches I and II represented byL’s and
h’s, respectively. Branch I corresponds to impulse field com-
putations for undistorted initial configurations. Impulse fields

with undistorted initial guesses jump from the lower branch
to branch I atlc<7.9. Impulse field computations corre-
sponding to the initial guessfszd=cosspzd have a similar
behavior as they switch from the lower branch to branch II.
A solution stays on branch Isrespectively IId for l.lc when
downward ramping is employed starting withli =20, and
switches to the lower branch forl,lc. The value oflc is
independent of the initial configurations used. Thus the tran-
sition atlc may occur for any of the three initial orientations
of the director and we can view the turning point in Fig. 6 as
a generic singularity in the absence of both symmetry and a
trivial solution.

Since m is directly proportional to both the normalized
shear rateV and the plate separationd, increases in the pa-
rameterm can be viewed as increasing either the normalized
shear rate or the separation between the plates. Changing the
value of the parameterm changes the valueslc without
changing the qualitative behavior of the Fréedericksz transi-
tion for shear flows. Figure 7 shows the relationship between
lc andm for 1ømø7.

VII. CONCLUSIONS

We have carefully investigated the Fréedericksz transition
in steady state plane shear flows of nematic liquid crystals
between two parallel plates. We show numerically that when
the applied magnetic field is in the plane of the flow and
along the direction of the flow, the critical field strength at
which the transition occurs is close to the critical value in the
absence of flow. However, the perfect pitchfork bifurcation
obtained in the absence of flow is replaced by a transcritical
bifurcation from the zero solution. We also demonstrate that
when the applied magnetic field is perpendicular to the flow
direction, the Fréedericksz transition occurs at a higher value
and the bifurcation resembles a disconnected pitchfork. The
director orientation is sensitive to how the external field is
changed and the initial orientation of the director, but we
demonstrate the occurrence of the Fréedericksz transition for
initial configurations corresponding to both anticlockwise

FIG. 6. Computed bifurcation diagram for the Fréedericksz tran-
sition with shear in configurationsad corresponding to the boundary
value problems14d. L, h, ands indicate impulse field computa-
tions with initial guesses corresponding to I, II, and III, respectively.
The line along the lower branch indicates that ramped field compu-
tations corresponding to I, II, and III all yield this solution branch.
The initial guesses arefszd= ±cosspzd or fszd=0.

FIG. 7. Relationship betweenlc andm=Vdg /2K for configura-
tion sad.
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and clockwise distortion of the director in the presence of
shear.
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